

Die neuen SPARC M10 Server von Fujitsu

Schöneiche, den 24. April 2013

FUJITSU

Ingo Gering, Principal Solution Design Architect

Fujitsu Technology Solutions GmbH ist Reseller der Firma Oracle für M10, T5 und M5

Quelle der Inhalte: Fujitsu Global (Japan)

FUÏITSU

Fujitsu and Oracle's Collaboration - One Big Result -

- SPARC64 processor
- Supercomputer technologies
- Mission-critical technologies

New SPARC Servers **FUJITSU M10**

Extreme performance increase with **Software on Chip** developed via Fujitsu and Oracle's collaboration

ORACLE

- No. 1 UNIX OS Oracle Solaris
- No. 1 Database software
- Innovative technologies

New Processor SPARC64 X

- Drastic performance improvement by the latest supercomputing and semiconductor technology
- 16 core, 32 thread (Max 2,048 threads/system)
- Large on-chip cache memory
 - L1\$ per core: 64 KB (I) + 64 KB (D)
 - L2\$ per CPU chip: up to 24 MB
- 28 nm Process
- Rich Software on Chip Features
- System on Chip: integrated controllers
- Further improved RAS features
- Software on Chip

SPARC64 Processor Comparisons

		SPARC64 X	SPARC64 VII+	
Supported models		FUJITSU M10-1, M10-4, M10-4S	SPARC Enterprise M3000, M4000, M5000, M8000, M9000	
Semiconductor technology		28nm	65nm	
Frequency		Up to 3.0 GHz	Up to 3.0 GHz	
Number of cores per CPU chip		Up to 16	Up to 4	
Number of threads per core		2	2	
Cache memory	L1 (per core)	64 KB + 64 KB	64 KB + 64 KB	
	L2 (per CPU chip)	Up to 24MB	Up to 12MB	
Software on Chip		Ready	None	
Number of error checkers		53,000	3,400	

Innovation Changes the Game

Copyright 2013 FUJITSU

New S	erver	Lineup	
-------	-------	--------	--

Product lineup that meets any business needs

All models support

Oracle Solaris 11 and 10

4-socket Building Block can scale up to 64 sockets (Max: 1,024 cores)

FUJITSU M10-4

4 sockets

(Max: 64 cores)

FUJITSU M10-1

1 socket (Max: 16 cores)

Dynamic Scaling

* Plan for the next generation processors

FUITSU

M10 Comparison with M-Series (socket based), but Factor 4 for cores and >> Factor 4 for performance

World's No.1 Performance

CPU Performance No. 1 SPECint rate2006 23,800 11,300

Current World RecordFUJITSU M10(64CPU)

SPEC (The Standard Performance Evaluation Corporation) and SPECint are registered trademarks of Standard Performance Evaluation Corporation(SPEC) in the US and other countries. Details and the latest information of this benchmark can be found at http://www.spec.org. The performance value of FUJITSU M10 has been submitted to SPEC on Jan 18th, 2013.

Current World Record FUJITSU M10(64CPU)

805 GB/s

Memory Performance

STREAM Triad

STREAM is one of the widely used benchmarks. This benchmark measures memory bandwidth when the processor accesses the memory.

Details of the STREAM benchmark can be found at <u>http://www.cs.virginia.edu/stream/</u>. The performance value of FUJITSU M10 has been submitted on Jan 18th, 2013.

No. 1

4,002_{GB/s}

Innovation in The Processor: Software on Chip Fujitsu

Software on Chip, a concept that came from supercomputer development, accelerates future Oracle database performance

Reliability for Mission-critical Applications

- Hardware self-detection and selfrecovery
- Enhanced RAS features
 - Redundant Building Blocks eliminates single points of failure
 - Reserved processor
- Robust Oracle Solaris
 - Predictive Self-healing

Benefits of the New FUJITSU M10 Server

- Increased performance
 - Faster time to deal with Big Data
- Increased capacity
 - ✓ Start small and grow up to 64 processors without penalty
- Increased flexibility
 - Faster time to grasp new business opportunities
- Mainframe level reliability
 - High availability for mission-critical applications
- Smaller energy consumption and foot print
 - Reduced data center infrastructure costs
- Investment protection
 - ✓ Solaris binary compatibility and mixed CPU generations

Summary

- The FUJITSU M10 server is the jewel of Fujitsu and Oracle partnership
 - Software on Chip will boost Database systems
- FUJITSU M10 customers will enjoy supercomputer technology
- FUJITSU M10 Customer Benefits:
 - Increased performance
 - Optimized compute capacity
 - ✓ Increased reliability
 - Investment protection

FUITSU ORACLE®

FUJITSU

shaping tomorrow with you

Maximized utilization efficiency to allocate resource where and when needed at no additional cost

Innovation in Cooling: Liquid Loop Cooling

ng Fl

Existing Technologies

Air Cooling: Blowing air over heat sink(s)

(Technical challenges)

- ✓ Larger server size due to larger heat sink
- ✓ Louder fan noise

Liquid Cooling: Circulate heat externally through coolant piping installed in the server

(Technical challenges)

 Requires large-scale construction for external cooling unit Server External

Heat sink

Air flow

cooling unit

CPU

New Technology: Liquid Loop Cooling

Hybrid Cooling

(Air Cooling + Liquid Cooling)

Coolant will circulate the heat to the heat sink to be air-cooled. The heat sink is positioned inside the server at the most efficient place for cooling

(Benefits)

- Smaller heat sink and fan: Compact chassis and reduction of fan noise
- ✓ Improved flexibility of system design: Minimized CPU-memory distance
- ✓ CPU temperature suppression: parts life extension

Minimized distance among LSIs by Liquid Loop Cooling FUJITSU

Centrally mounted CPUs minimize CPU-memory distance and enable fast memory access

Reliability, Availability, Serviceability

Units	Error detection and correction scheme
Cache (Tag)	ECC
	Duplicate & Parity
Cache (Data)	ECC
	Parity
Register	ECC (INT/FP)
	Parity (Others)
ALU	Parity Predictive/Residue
Cache dynamic degradation	Yes
HW Instruction Retry	Yes
History	Yes

- New RAS features from SPARC64™ VII/VII+
 - ✓ Floating-point registers are ECC protected
 - ✓ #checkers increased to ~53,000 to identify a failure point more precisely
 - Guarantees Data Integrity

Easy Management

- Oracle Enterprise Manager Ops center -
- Single management tool for Oracle Systems will support FUJITSU M10 servers
- Simplify and reduce the cost of system management

Green Technology

Power Capping

 Possible to set the upper limit of energy consumption

Energy consumption (W)

Power Saving

- Possible to set low-power level mode per hardware partition
- Reduce power of low-utilized hardware: FUJITSU M10 automatically identifies hardware in idle status and reduces power
 - ✓ Adjust energy consumption
 - Suppress clock event
 - ✓ Low-voltage operation

Protect chassis investment

- ✓ Add additional Building Blocks to increase capacity
- ✓ Mix different processor speeds (plan for the next processor)
- Oracle Solaris 8 and 9 run on FUJITSU M10 with Legacy Oracle Solaris Containers
- Binary Compatibility (Solaris Binary Application Guarantee)
- Easy migration with P2V tool of Oracle Solaris Zones

Best for Mission-critical Applications

- Built to grow with customers' business
 - ✓ CPU Activation, Building Block architecture
- Business always run because protected by graceful RAS
 - ✓ Goal of no downtime
 - ✓ Hardware self-healing
 - ✓ Fault isolation by partitioning and Building Blocks
- Designed for high capacity and complex workload
 - World No.1 performance and scalability (Up to 1,024 cores)
- Maximize ROI, Minimize investment risk
 - Investment protection

Best for Database, BA, BI Applications

- Software on Chip to accelerate Database applications
- Massive memory capacity
 - ✓ Up to 32 TB per system, 32 GB per CPU core
 - CPU allocation by CPU Activation can further increase memory/cache memory capacity per CPU core
- Extreme scalability suitable for Big Data
 - Ready for unpredictable increase of data and workload

Development of High performance Processors

SPARC technology for both business and HPC workloads

	2010	2011	2012	2013
	SPARC Enterprise	Supercomputer "K Computer"	PRIMEHPC FX10	Fujitsu M10 server
Die				
Processor	SPARC64 VII+	SPARC64 VIIIfx	SPARC64 IXfx	SPARC64 X
Frequency	3.0GHz	2.0GHz	1.85GHz	3.0GHz
Number of cores	4 cores/CPU	8 cores/CPU	16 cores/CPU	16 cores/CPU
Process	65nm	45nm	40nm	28nm

(*1) "K computer": The nickname of "the next generation supercomputer" that RIKEN announced in July 2010.

Product Images

M10-1

0

-

0

.

0

0

ŀ

M10-1

M10-4

M10-4 System Board

M10-4S

M10-4S System Board

PCI Box

1 Rack, 8 Building Blocks

2 Racks, 16 Building Blocks

FUJITSU

Specifications

		SPARC M10-1
CPU Frequency		2.8 GHz
	Number of cores per CPU chip	16 cores
	Number of threads per core	2
	L1\$ per core	64KB (I) + 64KB (D)
	L2\$ per CPU chip	22MB
Memory Number of slots		16
	DIMM type	DDR3
	Max capacity	512GB
HDD	Number of HDD bays	8
PCI	Number of slots	3 ^(*1)
slot	PCI standard	PCI Express 3.0
Form Factor		1RU
Max Power consumption		870W

Front view

Rear view

*1: In addition, Possible to connect PCI Expansion unit

		SPARC M10-4
CPU Frequency		2.8GHz
	Number of Max CPU	4
	Number of cores per CPU chip	16 cores
	Number of threads per core	2
	L1\$ per core	64KB (I) + 64KB (D)
	L2\$ per CPU chip	24MB
Memory	Number of slots	64
	DIMM type	DDR3
	Max capacity	2TB
HDD	Number of HDD bays	8
PCI	Number of slots	11 ^(*1)
slot	PCI standard	PCI Express 3.0
Form factor		4RU
Max Power consumption		2,600W

Front view

Rear view

*1: In addition, Possible to connect PCI Expansion unit

SPARC M10-4S: Specification

		SP	ARC M10-4S(Building Block	model)	
Configurat	ion	1BB	4BB	16BB	
СРИ	Frequency		3.0GHz		
	Number of cores per CPU chip		16 cores		Four 4S
	Number of threads per core		2		
	L1\$ per core		64KB (I) + 64KB (D)		
	L2\$ per CPU chip		24MB		
	Maximum Number of CPU chip	4	16	64	
	Maximum Number of CPU core	64	256	1024	$-$ 400 $+$ Boxes 4U \times 2
Memory	Number of slots	64	256	1024	
	DIMM type	DDR3		•	
	Max capacity	2TB	8TB	32TB	Four 4s
HDD	Number of HDD bays	8	32	128	
PCI slot	Number of slots	8(*1)	32(*1)	128(*1)	
	PCI standard		PCI Express 3.0	•	
Form facto	r	4RU	16RU	40U Rack x2	
Max Power	[•] consumption	2800W	11kW	50kW	*1: In addition, Possible to connect PCI Expansion unit